Reg.No.:			
106.1101.			

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 7015

B.E. / B.Tech. DEGREE SUPPLEMENTARY EXAMINATIONS – FEB. / MAR. 2020 Fifth Semester

Electronics and Communication Engineering
U15EC517 – TRANSMISSION LINES AND WAVEGUIDES
(Regulation 2015)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions (Smith chart may be provided)

PART - A

 $(10 \times 2 = 20 \text{ Marks})$

- 1. When will a transmission line deliver maximum power to the load?
- 2. Illustrate the relation between characteristics impedance and propagation constant.
- 3. Find the VSWR and reflection coefficient on a line having $Z_0 = 300\Omega$ and terminating impedance $Z_R = 300 + j400\Omega$.
- 9. 4. State the input impedance of a half wavelength (λ /4) line wave transformer.
 - 5. Define phase and group velocities. Give the equation relating them.
 - 6. Write the expression for cutoff wavelength of the wave which is propagated in between two parallel planes.
 - 7. Why the TE_{10} wave is called as dominant mode in rectangular waveguide?
 - 8. Determine the cutoff wavelength of a rectangular waveguide whose dimensions are a = 2.3 cm and b = 1.03 cm operating mode.
 - 9. Why TEM mode is not possible in circular waveguide?
 - 10. What are cavity resonator? Write the dominant mode in rectangular cavity resonator.

ñ

11. a) Derive the general transmission line equations for voltage and current at any point on a line.

(OR)

- b) A transmission line has following constants: $R=10.4~\Omega/m$, L=3.66~mH/m, $C=0.00835~\mu F/m$ & $G=0.8~\mu \mho/m$. Determine characteristic impedance, attenuation constant, phase constant& phase velocity at $\omega=5000~radians~sec$.
- 12. a) A 100+ j 200 Ω Load is connected to a 100 Ω lossless line using smith chart solve the following,
 - i. Reflection coefficient
 - ii. VSWR
 - iii. Load Admittance
 - iv. Input Impedance at 0.4λ from the load

(OR)

- b) A 50 Ω transmission line is connected to a cellular phone antenna with load impedance $Z_L = 25$ j50 Ω . Find the position and the length of a short-circuit stub to match the 50 Ω line using smith chart.
- 13. a) Explain the characteristics in parallel planes of perfect conductor. (OR)
 - b) For guided waves between two infinite conducting planes separated by a distance of 0.25 m, find cut off frequency for the TM₂₀ modes. If the operating frequency is 3GHz, solve phase velocity of the wave.
- 14. a) Derive the field expression for TM mode in rectangular waveguides with neat diagram.

(OR)

- b) Consider the length of Teflon-filled, copper K band rectangular waveguide having dimensions a = 1.07 cm, b = 0.43 cm. Solve cut off frequencies of the first five propagating modes. If the operating frequency is 15 GHz. (Relative permittivity of Teflon is 2.08)
- 15, a) Derive and explain the TM wave field components in circular waveguide using Bessel function.

(OR)

- b) i. With neat diagram, explain the excitation of modes in circular wave guide. (8)
 - Write the expression for cut-off frequency, cut-off wave length, wave impedance, phase constant for TE modes in circular wave guide.

PART - C

 $(1 \times 15 = 15 \text{Marks})$

16. a) A lossless transmission line with Z_0 = 50 Ω and d = 1.5 cm connects a voltage V_g source to a terminal load of Z_L = 50 + j50 Ω . If V_g = 60 V, operating frequency f = 100 MHz and Z_g = 50 Ω , Solve the distance of the first voltage maximum l_m from the load and what is the power delivered to the load P_L ? Assume the speed of the wave along the transmission line equal to speed of light C.

(OR)

b) An air filled resonant cavity with dimensions a=5 cm, b=4 cm and c=10 cm is made of copper ($\sigma_c=5.8x10^7$ mhos/m). Solve the resonant frequencies of the five lowest order modes and the quality factor TE_{101} mode.

